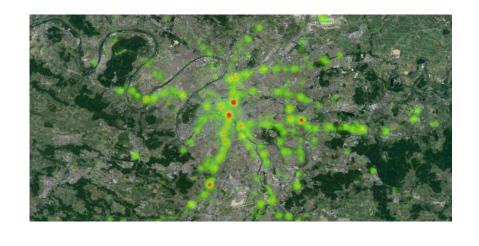
Visualizations and Metrics in Transit Planning

December 5, 2013 Model Users Group Meeting || Atlanta Regional Commission

Aaron Gooze aarongooze@gmail.com || Fehr and Peers

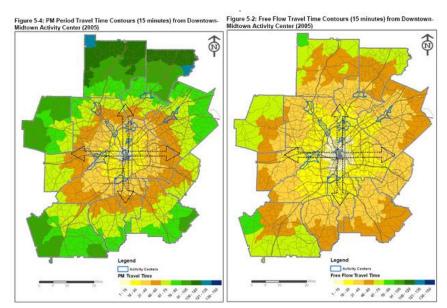
Jack Reed preed2@gsu.edu || GSU Landon Reed lreed@atlantaregional.com || ARC


James Wong jcwong@gatech.edu || Georgia Tech

Agenda

- Introduction
- Role of visualization
- Emerging Data Sources
- Site visit (www.transitio.us)
- Future Work

Casual visualization


Tweets about transit in Paris

Analytic Gap

Travel Demand Model

Output

Travel Demand Model

Bridging the Gap

Casual visualization

Utility visualization

Travel Demand Model

Transit Decision Support Tool

- Calculates transit metrics
- Combines land-use/demographic info
- Visualizations aid in data driven decision making
- Scalable to whole country
- Flexible for other geospatial data input

Requirements for Emerging Data Sources

Accessibility

– Is data open and available from most local sources or a central source?

Consistency

– Is the data organized and recorded in the same fashion for all scenarios?

Robustness

– Does the data have a level of detail that can be used for meaningful analysis?

Data Source Evaluation:

US Census, American Community Survey

Data provided

Age | Income | Race | Commute Patterns | Employment

Advantages

- Reliable and accurate data
- Standard across regions

Disadvantages

- Granularity of the census block
- Accessibility in correct format (API vs. downloads)

Data Source Evaluation:General Transit Feed Specification

Data provided

Routes | Stops | Stop times | Route shapes | Trips

Advantages

- Consistent across agencies
- Accuracy of data

Disadvantages

- Variations exist in adherence to standards
- No method for aggregated agency-level analysis

GTFS Output Examples

- Data can be calculated at the agency, stop or route level:
 - Headway
 - Stop spacing
 - Hours of service/span of service
 - Vehicles in service
 - Stop locations, names
 - Routes

Data Source Evaluation:

Yelp!, Google Places

Data provided

Restaurants | Schools | Parks | Landmarks | Religious Institutions

Advantages

- Dynamic and current nature of data
- Consistency across regions

Disadvantages

- Limitation on amount of results
- Accuracy can be suspect due to crowdsourcing

Google Places: Supported Place Types

Many, many options to arrange data

accounting airport amusement park city hall atm bakery bank bar beauty salon electrician bicycle store book store bowling alley bus station cafe campground car dealer car rental car repair car wash casino

cemetery church aquarium clothing_store art gallery convenience store health courthouse dentist department store doctor electronics store embassy establishment finance fire station florist food funeral home furniture store gas station general contractor

grocery gym hair care hardware store hindu temple home goods store parking hospital insurance agency pharmacy jewelry store laundry lawyer library liquor store local government locksmith lodging meal delivery meal takeaway mosque

movie rental

movie theater moving company museum night club painter park pet store place of worship plumber police post office real estate agency restaurant roofing contractor rv park school shoe store

EPA Smart Location Database

- National geo-database
- Census block-level data
- Land use and urban form fields:
 - Density
 - Diversity of land use
 - Urban design
 - Accessibility
 - Demographics
 - Employment
- Active project, still coming online

Considerations for Connecting Data

Geospatial

Most data can be identified spatially on a map

Temporal

 Much of transit quality of service information is defined over time and space

Currency/Automation

 Data changes over time, it's decreasingly useful to save data locally

Demonstration

Alpha version

www.transitio.us

Lessons on Transit Analysis

- What is a route?
- What is an "average headway?"
- What is a "typical" weekday?

Next Steps

Refining user scenarios:

- Equitable Transit Planning

What is the economic or demographic profile of areas where we are considering changes in transit service?

- Researchers

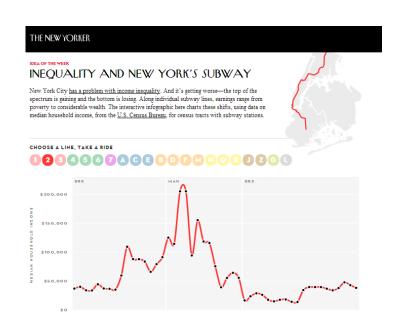
What are reasonable peer comparisons for transit agency statistics based on land use, people and economy?

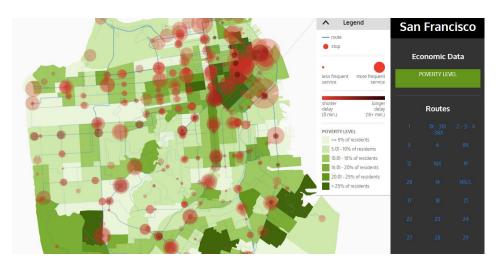
- MPOs/Travel demand modeling?

What role does this play?

Casual visualization

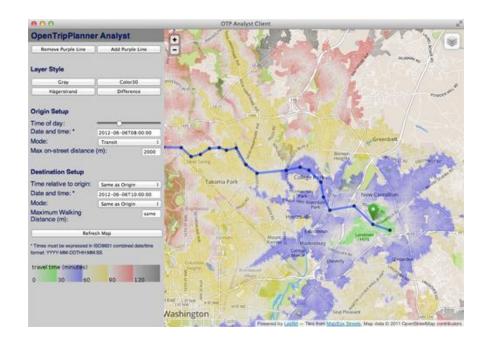
Utility visualization




Travel Demand Model

Next Steps

- Create reporting features
- Generate contextual agency information
- Enhance visualization of datasets



Next Steps

- Production instance
- Populate with all US agencies
 - GTFS upload feature
 - Scenario planning / what-if scenarios
- Integrate with OpenTripPlanner Analyst tools

Thanks!

Georgia Civil and Environmental Tech Engineering

