ARC's Planning Work on Climate Change

ARC/FHWA Climate Resilience Peer Exchange October 4, 2016 David D'Onofrio ddonofrio@atlantaregional.com

Outline

- ARC's Past Work on Climate Change
- Expected Future Climate Stressors

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

local relevance

2009 Taking the Temperature White Paper http://www.atlantaregional.com/climatechange

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

2009 Taking the Temperature White Paper http://www.atlantaregional.com/climatechange

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

Price Carbon and Incorporate into Project B/C

Produce CO₂ Emissions as Part of CMAQ Project Selection

Pursue Programs/Policies to Reduce Vehicle Trips & Encourage Sustainable Development

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

Transportation & Household Electricity Account for 61% of US GHG Emissions

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

Recent Research... Understanding Neighborhood Level Emissions

Goals:

- Continue previous ARC work in transportation and emissions modeling to establish a neighborhood level inventory of CO₂ emissions
- Understand potential policies and programs that impact CO₂ emissions

Emission Inventory – Scenario Planning – Project Evaluation – Community Design

Impact of Community Design on Greenhouse Gas Emissions

Total CO₂ Emissions per Household

Impact of Community Design on Greenhouse Gas Emissions

Percent of CO₂ Emissions from Transportation

Impact of Community Design on Greenhouse Gas Emissions

- Multimodal accessibility
- Transit share
- Distance to regional activity centers
- Population density
- Neighborhood walkability

Transportation Indicators

Residential Indicators

- Presence of multifamily housing
- Size of the residences
- Density of housing
- Number of people per household

What We've Learned to Date at ARC

- Technology drives emissions
- Planning has a small but important role to play
- Good community design can reduce emissions without asking people to change behavior

Given that Greenhouse Gases will Continue to Accumulate in the Atmosphere...

How will Atlanta's Climate Change in the Future?

Source: AJC

Coupled Model Intercomparison Project (CMIP5)

- Models help us understand changes in temperature and precipitation
- Methodology and summary tool developed by USDOT for climate resilience planning
- Downscales global climate models to local geography
- Analyzed 3 time periods
 - Early-Mid Century (2020-2050)
 - Mid-Century (2040-2070)
 - End-Century (2070-2100)

Global Emission Scenarios

	Scenario Name	Description	Concentration of CO ₂ in 2100 [*]	Global Surface Temperature Change by 2100	
	Low	Substantial Emission Reduction	475 ppm	0.5 – 3 °F (0.3 - 1.7 °C)	
	Med-Low	Stabilization – Low	630 ppm	2 – 5 °F (1.1 - 2.6 °C)	← "1.5°C to Stay Alive"
	Med-High	Stabilization – High	800 ppm	2.5 – 5.5 °F (1.4 - 3.1 °C)	← Paris Climate Agreement
1	High	Current Trend	1313 ppm	4.7 – 8.6 °F (2.6 - 4.8 °C)	← trend

* Current global CO₂ concentrations are around 404 ppm

What do Climate Models Say about Future Temperatures in the Atlanta Region?

Timeline	Days Above 92 °F	Consecutive Days above 92 °F
Baseline – Historic	18	7
2020-2050	51	19
2040-2070	64	31
2070-2099	84	50

Timeline	5 th Percentile Temperature	Avg. Number of Days Below Freezing	
Baseline – Historic	24°F	61	
2020-2050	25°F	49	
2040-2070	26°F	43	
2070-2099	29°F	33	

Factoids - Warmth

- In the 2010s Atlanta's seen an average of 40.4 days/year above 92°F (69 days in 2016 alone)
- 2007 GA Drought saw August with 28 days above 90°F
- By the end of the century our summer climate could be more like Houston, TX

Factoids - Cold

- Less extreme cold will impact the plants that grow in our region - Atlanta region's hardiness zone has increased by 1 since 1990 (from 7 to 8)
- Days per year with a freeze will drop by half by the end of the century to around 33 (similar to Tallahassee, Florida)

What do Climate Models Say about Future Precipitation in the Atlanta Region?

Timeline	Avg. Total Annual Precipitation	Very Heavy Precipitation Events per Year
Baseline – Historic	52″	10.6
2020-2050	54"	11.9
2040-2070	54"	11.9
2070-2099	54"	12.1

Factoids - Precipitation

- In general, all emission pathways think our region will tend to be wetter
- More large winter rainfall storm totals (1.5 times baseline)
- 10-20% more very heavy precipitation events annually
- About 50% more extreme precipitation events annually

What We Hope to Learn

- How do we prepare our communities and infrastructure for future weather conditions?
- How do we incorporate best practices in climate resilience into ARC's planning process?
- What sort of investments in infrastructure are necessary today to ensure their operation in tomorrow's climate?

Road Conditions during the 2014 snow storm Red triangles indicate all lanes blocked

David D'Onofrio ddonofrio@atlantaregional.com (404) 463-3268

🖹) atai

EMORY