

Metro Atlanta Climate Action Plan Stakeholder Update

ARC Webinar October 29, 2025

- While you wait...
 - Check and update your username
 - Microphones and cameras have been muted due to the number of participants
 - Please write your questions in the Chat and we will address it either in the Q&A portion or post a response on our website after the presentation is done
 - To ask a question during the Q&A using the microphone, please raise your hand using the "Raise Hand" function at the top of the screen and we will unmute your mic and call on you
 - Today's slides and links to additional resources will be shared with registrants after the meeting and posted on our CPRG & MACAP Public Input websites

I The meeting will start in a few minutes

Please introduce yourself/ your organization in the chat

Metro Atlanta Climate Action Plan Update

- Where we are in the planning process
- GHG reduction measure highlights
- Co-benefits highlights
- Workforce analysis highlights
- Next Steps
- Q&A

AGENDA

Vision ONE GTC TREGION

Mission

Foster thriving communities for all within the Atlanta region through collaborative, data-informed planning and investments.

Values

Excellence | Integrity | Equity

Goals

Healthy, safe, livable communities in the Atlanta Metro area.

Strategic investments in people, infrastructure, mobility, and preserving natural resources.

Regional services delivered with **operational excellence** and **efficiency**.

Diverse stakeholders engage and take a regional approach to solve local issues.

A competitive economy that is inclusive, innovative, and resilient.

Metro Atlanta Climate Action Plan (MACAP) Overview



CPRG Planning for the Atlanta MSA

- U.S. EPA Climate Pollution Reduction Grant
 - 81 MSAs
 - 45 states

- ARC is lead agency for Atlanta MSA CPRG
 - 29 counties
 - 150 cities
 - 57% of the state's population

Climate Pollution Reduction Grants (CPRG) Planning Grant

1

Priority Climate Action Plan (Atlanta MSA PCAP)

- Near-term, high-priority, implementation-ready measures to reduce GHG emissions
- Submitted to EPA March 1, 2024

2

Implementation Grant Proposals

- Competitive grant proposals for projects intended to implement one or more PCAP measures
- Proposals submitted to EPA April 1, 2024

3

Comprehensive Climate Action Plan (Metro Atlanta CAP)

99%

- Near- and long-term GHG emission reduction goals, and prioritized measures to achieve goals
- Due December 1, 2025

4

Status Report

- Implementation status of quantified measures included in the MACAP
- Due at close of grant period late summer 2027

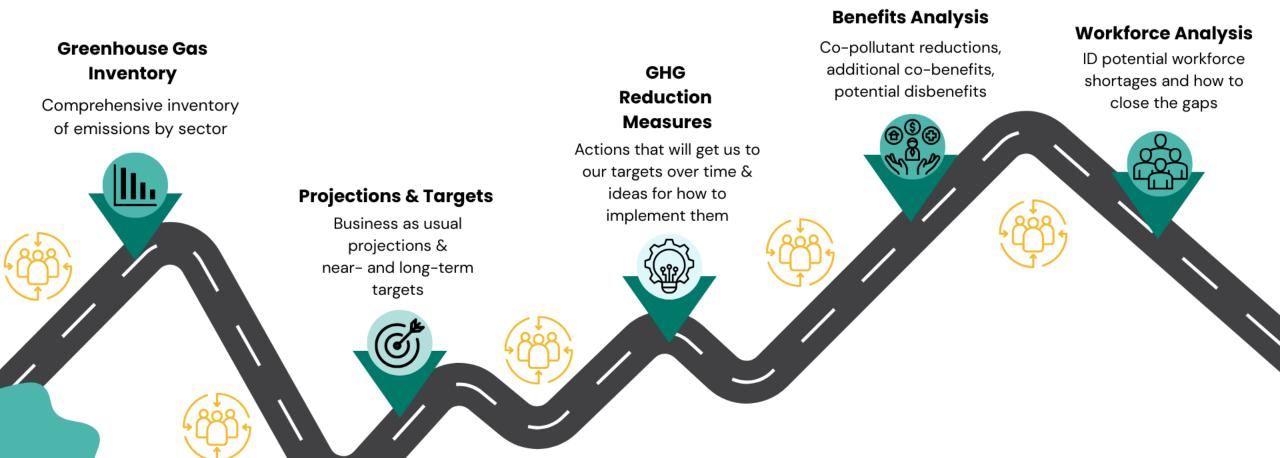
Metro Atlanta Climate Action Plan Timeline

A roadmap for those who want to take action to mitigate climate change and see positive results in their communities.

Audience

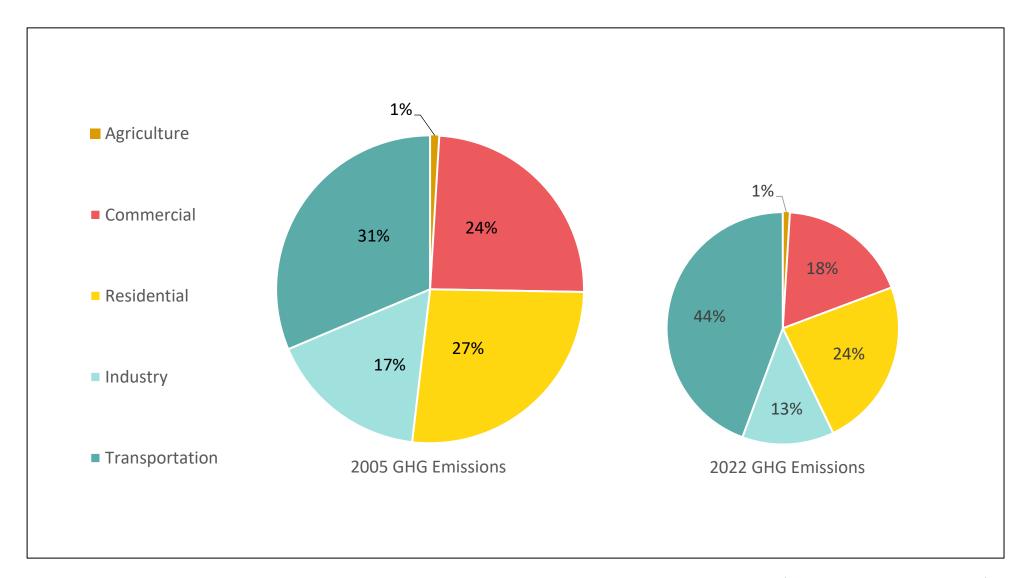
- Local Governments
- Business & Industry
- Schools & Universities
- Non-Profit Organizations
- Individuals

Outreach & Engagement


- Input from
 - other city & county plans
 - interagency conversations
 - community events
 - stakeholder webinars
 - online surveys

All 29 Atlanta MSA counties represented in responses to the online climate priorities survey

MACAP Roadmap



Metro Atlanta Climate Action Plan Highlights

Comprehensive Greenhouse Gas Inventory

Greenhouse Gas Targets

■ 2035 Target: reduce GHG emissions 50% below 2005 emissions

■ 2050 Target: reduce GHG emissions 80 - 85% below 2005 emissions

GHG Reduction Measures

Transportation

- IncreaseLight-duty EVs& EV Chargers
- Switch to Medium- & Heavy-duty EVs
- Shift Modes to Reduce Vehicle Miles Travelled

Largest **short-term** GHG reductions in this sector

Buildings

- Increase Energy
 Efficiency of
 Existing Buildings
- Electrify Buildings
- Adopt More
 Efficient Codes &
 Green Building
 Standards

Largest long-term GHG reductions + lowest net costs in this sector

Industry

- Increase Building Energy Efficiency
- Electrify
 Buildings and
 Industrial
 Processes
- Improve Efficiency of Processes

- Limit Non-CO₂ GHG Emissions by Improving Processes
- Convert Waste Heatto-Energy

GHG Reduction Measures

Energy

- Increase Urban Scale Solar
- Increase Rooftop Solar and Battery Storage
- Encourage Electricity
 Demand Response
- Convert Landfill Gasto-Energy
- Convert Wastewater Gas-to-Energy

- Reduce Construction & Demolition Waste
- Increase Composting

- Add Trees & GreenInfrastructure
- Protect & Restore Forests

Accelerate
 Adoption at the
 Local Level

Transportation		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)		
T1. Light Duty Electric Vehicles, EV Chargers, and Grid Balancing	Encourage a shift to light duty electric vehicles from internal combustion engines, increase the installation of EV charging stations, and use EVs to help balance the electric grid.	4.80	5.68		
T2. Electrify Fleets	Transition medium- and heavy-duty vehicle fleets to electric vehicles with similar performance capabilities, especially for short-haul and local applications.	2.85	3.68		
T3. Reduce Vehicle Miles Traveled	Decrease vehicle miles traveled by enabling greater use of different modes of transportation, such as walking, biking, transit, teleworking, carpooling, and mass transit.	0.66	2.23		

Buildings – R	esidential & Commercial	GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)		
R1. Home Energy Efficiency	Retrofit existing homes to be more energy efficient through updating HVAC systems, switching to newer lighting and appliances, using cool roofing, sealing air ducts, and other similar methods.	1.92	5.92		
R2. Residential Energy Efficiency Codes & Green Building Standards	Support local governments in adopting more efficient residential energy codes and/or green building standards.	0.88	11.60		
R3. Electrify Homes	Electrify existing homes by encouraging a switch from gaspowered appliances, water heaters, and HVAC systems to electric systems.	0.60	2.16		

Buildings – R	esidential & Commercial	GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
C1. Commercial and Multifamily Building Energy Efficiency	Retrofit existing commercial and multifamily buildings to be more energy efficient through updating HVAC, using geothermal, updating lighting and appliances, using cool roofing, sealing air ducts, etc.	0.60	3.55
C2. Commercial Energy Efficiency Codes & Green Building Standards	Support local governments in adopting more efficient commercial energy codes and/or green building standards.	0.57	11.00
C3. Electrify Commercial and Multifamily Buildings	Electrify existing commercial and multifamily buildings by encouraging a switch from gas-powered appliances, water heaters, and HVAC systems to electric systems.	0.04	1.98

Industry		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
I1. Industrial Building Energy Efficiency	Retrofit existing industrial buildings to be more energy efficient through updating HVAC systems, using geothermal HVAC, switching to newer lighting, using cool roofing, and other similar methods.	0.04	0.26
I2. Electrify Industrial Buildings	Electrify existing industrial buildings by encouraging a switch from gaspowered systems and processes to electric systems and processes.	0.04	0.14
I3. Retrofit industrial processes and equipment	Retrofit existing industrial processes and equipment to more energy efficient processes and systems.	0.68	1.59

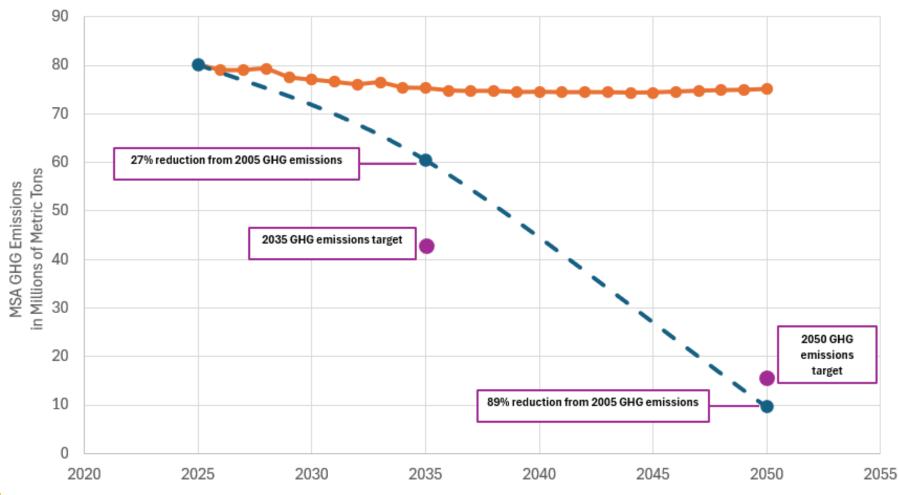
Industry		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
I4. Decrease non- CO2 GHG Emissions	Decrease non-CO2 GHG Emissions through improved industrial processes.	0.13	0.45
I5. Waste Heat to Energy or HVAC	Capture heat from industrial processes to provide HVAC and/or create electricity.	0.16	0.49

Energy		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
E1. Urban Scale Solar	Increase usage of "urban-scale" solar by installing solar on landfill and wastewater sites and community solar small-acreage sites.	0.02	0.70
E2. Rooftop Solar and Battery Systems	Increase installation of rooftop solar and battery storage systems.	0.09	2.80
E3. Electricity Demand Response	Adopt demand response actions in local government facilities, businesses, and homes by shifting energy use to off-peak times, using power strips, installing smart thermostats, and other similar methods.	-1.07	4.38

Energy		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
E4. Wastewater Gas-to-Energy	Capture biosolids & biogas at wastewater treatment plants for gasto-energy creation.	0.25	0.66
E5. Landfill Gas- to-Energy	Capture methane at landfills for gasto-energy creation.	0.07	0.60

ເລີ Waste & Mate	rials	GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)		
WM1. Reduce Construction and Demolition Waste	Reduce construction and demolition waste by designing material-efficient buildings, promoting adaptive reuse of buildings, and deconstructing buildings to reuse and recycle their components rather than sending them to a landfill.	0.42	0.55		
WM2. Increase Composting	Reduce the amount of food, yard, and tree waste that goes into landfills by composting.	0.12	0.30		

Trees & Green	nspace	GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)		
TG1. Add Trees and Green Infrastructure	Increase tree canopy and vegetative coverage through afforestation and green infrastructure.	0.08	0.42		
TG2. Restore and Protect Forests	Restore and protect temperate- climate working forests through improved forest management.	0.03	0.09		



Cross-Sector		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)
CS1. Accelerate Adoption at the Local Level	Provide incentives and technical assistance to increase local government adoption of climate mitigating policies, ordinances, and programs.	0.65	2.90
			CUC Emissions
		GHG Emissions Reductions in 2035 Compared to the BAU (MMTCO2e)	GHG Emissions Reductions in 2050 Compared to the BAU (MMTCO2e)

Projected GHG Emissions Reductions

Comparison of Atlanta MSA Business as Usual GHG Emissions and Reduced Emissions from 24 Climate Measures

Closing the GHG Gap

- Conservative in our modeling
 - Based the modeling on an assumption of increase in energy demand from data centers & repeal of certain federal policies and funding
 - Modest uptake of these measures over time

Identified long-term options that may be included in future plans to close the gap:

- Cool roofs (Buildings)
- Mass Timber (Buildings & Trees/Greenspace)
- Carbon Capture & Sequestration (Industrial)
- Concrete Clinker Substitution (Industrial)
- Virtual Power Plants (Energy)
- Carbon Pricing (Cross Sector)

GHG Reduction Measure Details

- Description of the Measure, including relevant background information and specific actions that local governments, businesses, individuals, and others can take to implement the measure
- Geographic Scope of where the measure can be implemented
- GHG Emissions Reductions in 2035 and 2050 and associated Co-Pollutant Reductions in 2035 and 2050 that may be achieved through implementing the measure compared to the Business-As-Usual scenario
- Net Cost that may be required to implement the measure
- Primary Co-Benefits that may be achieved along with reducing GHG emissions
- Implementation Details, including Key Implementation Partners, example Implementation Milestones and Timelines, and potential Metrics to Track Progress

Co-Benefits Matrix

KEY:

- Direct Co-Benefit
- Indirect Co-Benefit
- Co-benefit not present

		Improved Air Quality	Expanded Transportation Options		er Heal ellbein		Low Cos		In	creased Resili		· &	of Na	ection atural urces		gthened Economy	
Sector	Measure Name & Number	Improved Air Quality	Expanded Transportation Options	Improved Living or Working Environment	Reduced Noise Pollution	Public Health Improvements	Lower Bills (Utilities, Gasoline, etc.)	Lower O + M Costs	Increased Safety	Reduced Load on the Electric Grid	Community Beautification	Community Preparedness & Resilience	Conserves Landfill Capacity	Decrease Water Consumption	Increased Property Value	Workforce Development	Contributes to Local Economy
Transportati	T3. Reduce Vehicle on Miles Traveled	•	•	0	•	•	•	•	0	•	0	0			0	0	0
Buildings (Residential)	R1. Home Energy Efficiency	•		•	0	0	•	•		•		•	0	•	•	•	0
Buildings (Residential)	R2. Residential Energy Efficiency Codes & Green Building Standards	•		•	•	0	•	•		•	0	0	0	•	•	0	•
Buildings (Residential)	R3. Electrify Homes	•		•	•	0	•	•		•	0	•		0	•	•	•
Buildings (Commercial and Multifamily)	C1. Commercial and Multifamily Building Energy Efficiency	•		•	•	0	•	•		•	0	•	0	•	•	0	•

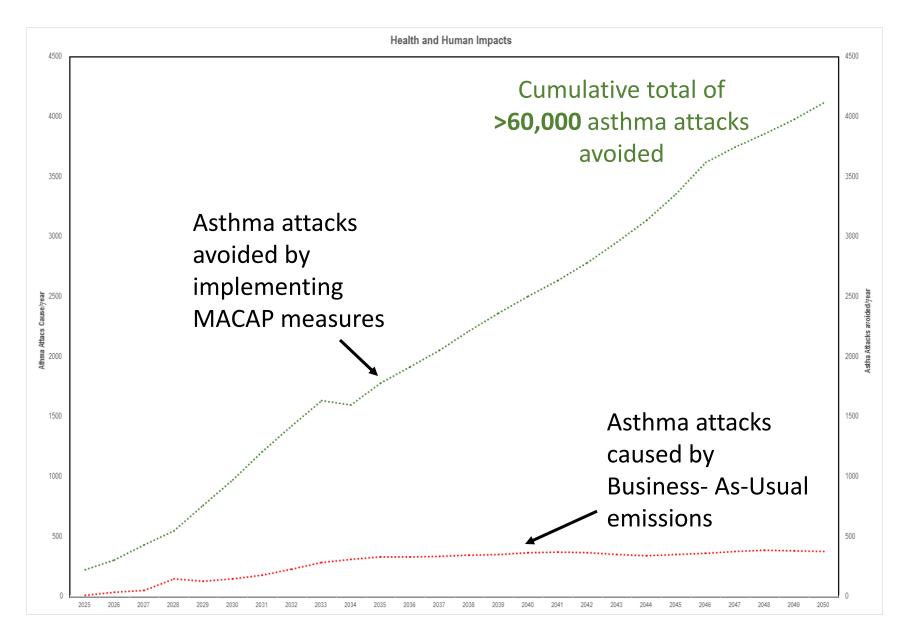
Opportunities for Action by Sector

- **Funding Opportunities** that may be available to support implementation of the measure
- Technical Assistance & Additional Information available from local and national organizations and plans
- Recommended Policy Actions to help increase the rate of implementation and realization of benefits of the measures
- Examples of Successful Projects and Programs within the Atlanta MSA

Funding Opportunities

Name of Opportunity	Sector	Funding Type	Funding Provider	Funding Amount	Eligible Entities	Link
Georgia Forest Legacy Program	Trees & Greenspace	Other	Georgia Forestry Commissio n			https://gatrees.org/forest-management- conservation/forest-legacy-conservation- easements/
Wildlife Viewing Grants Program	Trees & Greenspace	Grant	Georgia Dept. of Natural Resources	\$5,000	Local Governments; Schools; NGOs	https://georgiawildlife.com/WildlifeViewin gGrants
Land & Water Conservation Grants	Trees & Greenspace	Grant	Georgia Dept. of Natural Resources	\$500,000	Local Governments	https://gadnr.org/lwcf
Outdoor Recreation Legacy Partnership Program	Trees & Greenspace	Grant	Georgia Dept. of Natural Resources	\$15,000,000	Local Governments	https://gadnr.org/ORLPP
Conservation Use Tax Value Assessment	Trees & Greenspace	Tax Assessment	State of Georgia		Property Owners	https://dor.georgia.gov/local- government-services/digest- compliance/conservation-use-land- values
Recycling and Waste Diversion	Waste &	Cront	Georgia Environme ntal Protection Division	Varies	Local Governments & Public Agencies/ Authorities/ Commissions/	https://epd.georgia.gov/about-us/land- protection-branch/recovered-materials- and-abatement/recovered-
Grant Tire Products	Materials Waste &	Grant	Georgia Environme ntal Protection		Institutions Local Governments & Public Agencies/ Authorities/	materials/recycling-and https://epd.georgia.gov/about-us/land- protection-branch/recovered-materials- and-abatement/recovered-materials/tire-
Grant	Materials	Grant	Division	Varies	Commissions/	<u>products</u>

Co-Benefits Analysis: Reduced Co-Pollutants


Co-Pollutants 2050	Transportation (Thousand MT)	Buildings (Thousand MT)	Industry (Thousand MT)	Energy (Thousand MT)	Waste & Materials (Thousand MT)	Trees & Greenspace (Thousand MT)
Carbon Monoxide (CO)	30.2	11.8	0.2	0.5	0	-0.001*
Particulate Matter 2.5 (PM _{2.5})	0.6	4,214	89.8	133.3	0.1	-0.0007*
Particulate Matter 10 (PM ₁₀)	1.5	4,532.1	97	152	0.1	-0.001*
Nitrogen Oxides (NO _x)	2.1	12.2	0.3	1.1	0	16.7
Sulfur Oxides (SO _x)	-0.05*	0.6	0.01	0.1	0.01	-0.001*
Volatile Organic Compounds (VOCs)	9.2	2,474.5	35.4	113.7	35.4	-1.3*
Total Reductions	44	11,245	223	401	36	15

^{*} A negative value indicates an increase in co-pollutant.

Co-Benefits: Avoided Asthma Attacks

Additional Co-Benefits

- Improved Air Quality
- More Transportation Options
- Better Health & Wellbeing
- Lower Costs
- Increased Safety & Resilience
- Protection of Natural Resources
- Strengthened Local Economy

Workforce Analysis: Metro Atlanta Leads in Green Jobs

76%

Metro Area	Total Clean Energy Jobs	Renewable Generation	Storage/Grid	Clean Fuels	Energy Efficiency	Clean Vehicles
Atlanta MSA	53,145	4,991	2,615	314	41,386	3,839
Athens-Clarke	1,118	316	23	<10	687	85
Augusta	3,541	750	464	<10	2,088	231
Brunswick	448	65	<10	<10	<10	308
Columbus	1,328	96	171	<10	917	142
Dalton	1,450	1,087	18	<10	243	100
Gainesville	1,361	78	28	<10	796	456
Savannah	2,178	152	112	<10	1,699	212

Source: E2 Clean Jobs Georgia 2024 Factsheet

Workforce Analysis: Example Green Jobs

TRANSPORTATION

Software developers

Electrical engineers

Electrical, electronic, & electromechanical assemblers

Electricians

Cement masons & concrete finishers

E-bike mechanics & technicians

BUILDINGS

Insulation workers

Heating, air conditioning, ventilation (HVAC), and refrigeration mechanics and installers

Plumbers, pipefitters, and steamfitters

Construction laborers

Energy auditors

INDUSTRY

Manufacturing/Industrial engineers

Machine operators

Robotics technicians

CNC machinists/operators

Industrial production managers

Welders

Workforce Analysis: Example Green Jobs

ENERGY

Powerline installers and repairmen

Solar installation technicians

PV System Designer

Renewable energy plant operators

Energy managers

Energy engineers

TREES & GREENSPACE

Arborists

Foresters

Urban foresters

Landscape architects

Stormwater engineers

Green roof installers

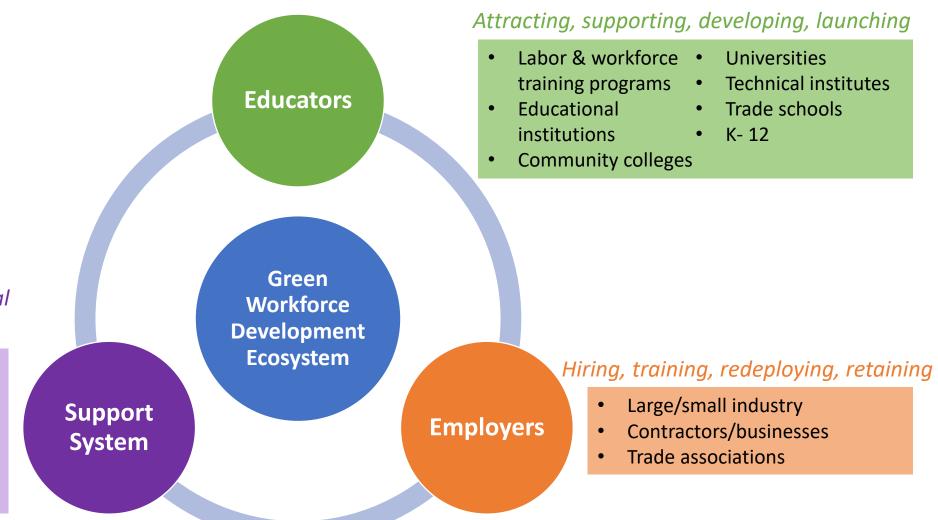
WASTE & MATERIALS

CDL drivers

Material sorters

Equipment operators

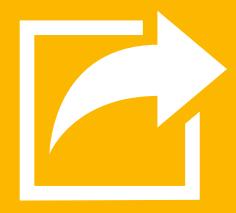
Deconstruction workers


Materials managers

Architects

Workforce Analysis: Green Workforce Ecosystem

Economic development, supportive policy, supplemental services


- Federal, state & local governments
- Utilities
- Consumers
- Local resource organizations
- Nonprofits

Next Steps

- Plan Adoption (November 2025)
- ♣ Plan Submittal to EPA (December 2025)
- MACAP Implementation Roadshow (March – December 2026)
- Development of Metrics & Tracking Implementation (2026 onwards)
- Status Report Submittal to EPA (September 2027)
- Incorporating into ARC Plans & Programs (ongoing)

Thank you

Crystal L Jackson

Planning Manager, Climate + Sustainability cjackson@atlantaregional.org